Overview:

On August 21st, Eric Brugger, David Camp, Hank Childs, Cyrus Harrison, and Brad
Whitlock met at LLNL and discussed issues with adding hybrid parallel support to
Vislt. This document summarizes the discussion, and outlines a direction for initial
hybrid parallel support. This document is a living document and feedback for
missing perspectives, improved planning, etc. is appreciated.

Tasks:

1) Infrastructure:
a. ThreadPool class that isolates details of pthreads, Windows threads,
OpenMP (?), etc from developers.
b. Support in host profiles
i. Number of threads to create (may be more than # cores)
ii. Flag for tasks per NUMA section
iii. Thread depth
c. -debugand -timing
d. efficientload balancing
i. split single large vtkDataSet into chunk that threads can
operate on. May be explicit split into multiple pieces or
implicit split where each thread is assigned a piece (i.e. this
thread to work on cells 1000-2000).
2) Filters
a. Embarrassingly parallel algorithms
i. Add core infrastructure to base classes for splitting an
avtDataTree over threads
ii. Audit filters and ensure thread safe (i.e. data members aren’t
modified in ExecuteData)
b. Non-embarrassingly parallel algorithms
i. Streamlines
ii. Volume rendering
iii. Audit and fix other non-embarassingly parallel algorithms
1. Pos-CMFE
2. Ghost zone generation
3. Line scans
4. M
3) Threaded I/0 requests
a. Implementation at avtGenericDatabase level
b. We identified that the appropriate threading for I/0 may be different
than the threading for filters. This has implications for host profiles.
4) Threaded rendering



Plan:

An initial phase will take place in the next few months. Camp and Childs will be
carrying out the majority of the work & Whitlock and Harrison have volunteered to
help as well. The initial phase will include 1a, 1b, 1c, 2a, 2bi, 2bii.

Subsequent phases (1d, 2biii, 3, 4, and other subsequently identified tasks) will take
place after the initial phase is committed to the repo.

Discussion:

Additional discussion covered the following items:

1)

2)

3)

We are going to ignore the issue of pinning data to threads on certain cores
initially. David believes that we should not worry about NUMA effects in the
first phase of the threading work. He thinks if the data is divide correctly we
should not suffer from the NUMA effects. Also if we find issues, there are
ways to create tasks that run per NUMA node and only use the threads on the
NUMA section.

He believes we can have a bigger win by working on good load balancing, on
the threads, to offset any hit by the NUMA effect. Good load balancing can
improve our cache hits and provide better performance improvements to
Vislt.

Brad suggested a new “ParallelContext” object that allows each thread to
know its ID and may have future benefits with respect to multiple
simultaneous pipeline executions, distinct MPI communicators, etc. Brad
fleshed this out subsequent to our meeting and posted the discussion to
visitusers.org. You can see the description here:
http://www.visitusers.org/index.php?title=Parallel_ideas

We decided to instantiate our threads one time per program, rather than
instantiating and deleting with each filter execution, as the overhead for each
thread create/destroy is of concern



