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ABSTRACT

.
Since1970a researchand developmentprogramin Free-Lagrangemethodshas been

activeat Livermore. The initialstepswere takenwith incompressibleflowsfor

simplicity.Sincethen the efforthas beenconcentratedon compressibleflowswith

shocksin two spacedimensionsand time. In general,the line integralmethodhas

been usedto evaluatederivativesand the artificialviscositymethodhas been used

todeal with shocks.

Basically,two Free-Lagrangeformulationsfor compressibleflowsin two space

dimensionsand time have beentestedand bothwill be described. In methodone, all

prognosticquantitieswere nodecenteredand staggeredin time. The artificial

viscositywas zonecentered. One mesh reconnectionphilosophywas thatthe mesh

shouldbe optimizedso that nearestneighborswere connectedtogether. Anotherwas

that vertexanglesshouldtend towardequality. In methodone, all mesh elements

were triangles.

In methodtwo, bothquadrilateraland triangularmesh elementsare permitted.

The mesh variablesare staggeredin spaceand time as suggestedoriginallyby

Richtmyerand von Neumann. The mesh reconnectionstrategyis entirelydifferentin

methodtwo. In contrastto the globalstrategyof nearestneighbors,we now have a

more localstrategythat reconnectsin orderto keepthe integrationtime step above

a userchosenthreshold. An additionalstrategyreconnectsin the vicinityof large
c relativefluidmotions.

Mesh reconnectionconsistsof two parts: (1) the toolsthat permitnodesto be.
. mergedand quadsto be splitinto trianglesetc. and; (2) the strategythat dictates

how and whento use the tools. E!othtoolsand strategieschangewith time in a

continuingeffortto expandthe capabilitiesof the method. New ideasare

continuallybeingtriedand evaluated. The successfulones stay in the code,and in

somesenseits intelligenceincreaseswith time.

Examplesof mesh optimizationtoolsand strategiesand of sampleproblemswill

be given.
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1. Introduction

The Free Lagrangeeffortat Livermorehas.beenactivesince1970 and has moved

sequentiallyin threedifferentdirections.The initialeffortwas confinedto

incompressibleflows[1]. Duringthis time basicideaswere exploredsuch as initial

mesh constructionand mesh reconnectionduringthe evolutionof a problem. It was
soon realizedthat initialmesh generationand mesh reconnectionwere separable

problems. In thispaperwe will assumethat a mesh existsand concentrateon mesh

reconnection.

Anotherproblemthat must be facedinvolvesthe centeringof prognostic

variablesin spaceand time. In the initialincompressibleeffortand in the first

compressibleeffortall prognosticvariableswere nodecentered. Thishas the

potentialadvantagethat mesh reconnectionwill not changethe valuesof prognostic

variables- that”is, mesh reconnectiondoes not introducediffusion. Nodecentering

has difficultieswhen it comesto multi-materialproblems. The notionof material

interfaces,if donecorrectly,introducescomplexities.In the secondeffort,

materialinterfaceswere handledin a rathercrudeway and this led to somewhat

results.

The thirdand currenteffortsolvesthe materialinterfaceproblemby

crude

recenteringthe variablesaccordingto the traditionalLagrangian

Richtmyerand von Neumann[2]. Energyand mass are zonecentered

velocityand accelerationare node centered. With this approach,

are well defined;they fallon zone edges (alonglinesconnecting

disadvantageis thatmesh reconnectionnow introducea mixingof

centeringof

- position,

materialinterfaces

nodes). The

adjacentzone

.

attributesand thus diffusionoccurs. Howeversincemesh reconnectionis now more

localthan global,it is thoughtthat the effectof diffusionis small.

Shockwavesare an importantaspectof compressibleflows. In these

formulationsthey are automaticallytakencare of by an artificialviscosity[2,3].

Spatialderivativesare done with the Line Integralmethod[4].

In the thirdeffortthe mesh reconnectionphilosophychangedalongwith the

centeringof variables. In the firsttwo efforts,mesh reconnectionwas a global

affairwiththe goal in mind of connectingnearestneighbors. In the thirdeffort

the strategyis threefold: (1) to accommodateshearingmotions;(2) to keep the

integrationtime step up and; (3) to preventboomerangand bowtiezonetopologies.

Sinceall theseformulationsuse an explicitschemefor time differencing,the

integrationtime Step is an importantconsideration.

The remainderof this paperis dividedinto six sections. Section2“givesthe

equationsof motion. Section3 describesthe line integralmethodwith particular ‘-’-:

applicationto the momentumequation. In section4 the firstcompressibleeffort :

-1

.

will be

section

described. In section5 the currenteffortwill be describedand in

6 mesh reconnectionand optimizationwill be described. An interactive

&
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graphicscapabilityis quiteimportantto the developmentof thesemethods.

Commentson interactivegraphicsare in section7. Resultsfroma sampletest

problemare describedin section8.

2.

the

Equationsof Motion

In traditionalLagrangiancodes,eachnode has an invariantset of neighborsand

spatialdifferencetermsusuallyinvolvethe originalcoordinatesand a Jacobian

that transformsfromorginalto currentcoordinates.In many casesthe mesh elements

(zones)are quadrilaterals.

In this formulation,the mesh elementsare both trianglesand quadrilateralsand

the numberof neighborsof each node may changewith time. It is more convenientto

expressderivativesin termsof currentcoordinates;Pomraning[5] refersto this

formulationas the ModifiedEulerianand to the traditionalformulationas the

Lagrangian.

The equationsof motionare

1. $= -~(gradp+div~)

To theseare appended

P = p(c,p)

~grad(fi)

an equationof state

Momentum

Mass

SpecificInternalenergy

a kinematicequation
‘

di ~-. w=.

. and an equationfor the artificialviscosity

1
@LJ(Au- Clc) ifAu<O

q’

o otherwise. t::
. .

The artificialviscosityactuallyused is somewhatmore complexin 2D - different ;

formsare requiredby quadrilateraland by triangularzones. The tensord used here

is in a stateof continualdevelopment.In addition,an optionalqkk [6]may be used-

to inhibitnonphysical smallscalemotionsin quads.
&
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The equationsare solvedin a cylindricalgeometrywith

1 : (r;z)

::&g)

3. The Line IntegralMethod

Green’sTheoremin the planestates

maP ~) dxdy=j(Pdy-Qdx)3X+ay

whereP and Q are arbitraryfunctionsof x and y. TakingfirstP to be zero and then

Q we have

aP $ p dy

%=
!$X dy

3P - $ p dx

~=
$ X dy

where~ax and ~~y are mean valuesoverthe area$ x dy. In finitedifferenceform

we have

4P dY’~ p9J2(Yg-YJ/2 (3.1)

The path of integrationconnectsthe mid pointsof the edges- it does not include

pointsin the zonesbecausePg-1,2is assumedconstantin a zone.

.-
.

.2.:

. .

,-
.

.
0i+Oj+6~

4’-1
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In the momentumequationwe need the gradientmultipliedby the reciprocalof the

density. The denominatorbecomes

p$xdy=

whereAg-1/2is the

E
.

pg-1/2$;-1/2‘g-l/2
RI

.
areaof zone k-1/2and whereV~-1,2is the ra~ioof angle

(3.2)

(Ll,i,!t)to the sum of all anglesin zone 91/2. The quantity$~_l/2AE-1/2‘s
.

thusthe fractionalcontributionof zone RO-1/2to node i.

The r-componentof accelerationis the ratioof equations(3.1)and (3.2)and

similarlyfor the z-component.

The accelerationcomputedaboveis in generalnot centeredat node i, but rather

at someotherpoint,say ai. The r-componentof accelerationat node i is

and similarlyfor the z-component.A similarcorrection

accelerationwas suggestedby Margolinand Nichols[7].

evaluatedby a line integralratioover a path including

path followsthe pointsag.

for velocityratherthan

Herethe term grad ~ is

the neighborsof node i;

.
.

. Work on

.am

m

~ computedhereb;lineintegralmethod

this correctionterm is in progressnow. At firstglance,the

shouldbe at the averagecentroidof the zones

4. The Node-CenteredCompressibleFormulation

In this formulationall mesh elementsare

surroundingnode i.

point

the

a.1

trianglesand all prognosticvariables

are point-centeredquantities.However,at the beginningof each cycleand after

optimization,temporaryzone-centeredenergiesand massesare computedby a mapping

process. Once thesequantitiesare computed,the traditionalLagrangiancentered

diff=rcmm= =mm+innc r71 arp Iwvi. At thp end nf the WP1O +h= nn;n+---n+~?p~
.
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forgotten.

First

are NPTOTmesh points and each point is connected to its nearest neighbors to give

triangularmesh elements. Each pointhas NUM neighborswhere

-6-

have been advancedin time,and all zone-centeredinformationis

The mappingprocesswill be describedhere.

it is necessaryto introducesome notationand someconventions.There

NUM 22 for boundarypoints

NUM > 3 for interiorpoints.

The threeverticesi, j, and k of each triangleare orderedin a counterclockwise

sensein our right-handed(xjy)coordinateplane,Fig. la. Sincej and k are two

the neighborsof i, i is a neighborof j and of k.

The completeneighborhoodof pointi consistsof severaltriangles. For

example,a typicalinteriorpointis sketchedin Fig. lb: pointi has fiveneighbors

and is surroundedby fivetriangles. The first neighbor of this pointmay be any of

its neighbors,but the othersmust follow in counterclockwise order. A typical

boundarypointis sketchedin Fig. lc. There,pointi has fourneighborsand three

triangles. InteriorpointshaveNUM neighborsand NUM neighboring triangles while

boundary pointshave NUM neighbors and NUM-1neighboring triangles. We are more

particularaboutthe organizationof boundaryneighborhoods.The firstand last

neighborsof boundary points are also boundary points, and the counterclockwise

ordering of the neighborsmeansthat a path fromthe firstto the last neighborlies

withinthe boundariesof

In referringto the

the problem.

neighborsof a point,we may use the localindex1.where

to a triangleby its “proper”name (i,j,k)orbyitsUsing this,we may refer

name and two indices(i,g,E+l).It is then naturalto denotepointquantities

fior fi

and zone quantities

‘fi+l/2“

first

of

When time is introduced,we will use an additionalsuperscript,and denotea

mixedquantityat time leveln

(f;+~,zln

or a pointquantityat time leveln

(fi)n

In general,the time indexis suppressedimplyingthat latestavailablevaluesare

.
.

used.
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a.Typicalzone

interiorpoint

Considerthe

triangleseach of

P flflj
,J;,l ‘“,,:

,,:I!I”

‘r”‘“ i,,17~f
@1 c.Typicalboundarypoint

REPRESENTATIVE GEOMETR!CSKETCHES

Figure1

interiormesh pointi in Fig.

whichhas a definiteareaand

lb. It is surroundedby five

volume. The curveC definesthe area

of the secondarymesh elementsurroundingthe pointi. That is, we subdivideeach

triangleintothreepartsassociatingonepart with each vertexof the triangle. If

A
1.+1/2is the areaof triangle(i,j,k)(Fig.la) then .
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.
is the area that pointi and zone 2+1/2have in common. The productn$~+1,2is

the angle in radians betweenside ~j and ~~.

An indefinitesummationnotationis used and is to be interpretedin the following

manner. The zone area is givenby

Z
.

A
l?+l/2= %+1/2

ijk

and the sum is over the threeverticesi, j, and k associatedwith zone 2+1/2. The

pointarea is givenby

zAi= “
ai+l/2

!?.

and the sum is over all zones9+1/2,(R.=1,L-1) surroundinga pointwhere,if NUM

is the numberof neighborsfor pointi,

NUM for interiorzones

NUN-1for boundary

Similarly,thereis a volume

‘L+l/2=
Flt+l/2‘L+l/2=

.
-i

.

‘;+1/2= ‘L+l/2%+1/2

z
Si= “s;+l/2

2

zones

associatedwith each zone and with each point

rl + rJ + rk
(“ ~“ ) ‘L+l/2

.

*
>

whereS is the volumeof revolutiondividedby 2m and where

(cylindricalgeometry)

(planegeometry)

and

.

1 -c
‘fi+l/2= . .

z ‘1 $:+1/2
ijk
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The constantL is takento be 7/12 to give

triangles. We-definethe geometricfactor

h:+l,2= ;i “
1.+1/2$:+1/2

and the mappingfactor

. . .

‘;+1/2= h;+l/2/~h;+l/2 “
. !L

. The mass contributionfrompointi to zone

.
(+1 -

the correctvolumesfor equilateral

L+l/2is (Fig.2)

(?

f~+l~=f(Xi,X’’T/Q+ 1)

Figure2

. . .

‘;+1/2= ‘1 ‘;+1/2

and the mass in zone k+l/2is the sum of the threevertexcontributions

●

X
.

‘&+l/2= ‘:+1/2 “
ijk

The specificinternalenergyin zone $+1/2is

.
1 z .

i
cL+l/2‘ mg+l,2

c1 m
1.+1/2“

ijk

and the densityis

Once the energyand densityhavebeen determined,the pressureis determinedthrough :

the equationof statep = P(c,P). *
Thesemappingequationshold for boundaryzones(Fig.lc) as well as interior

zones.
&
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.
The mappingdescribedhere is conservativein that the sum of ml or c1 over

all the pointsis identicalto the sum of m
!L+l/2‘r ‘~+1/2over all the zones.

Materials,materialproperties,and equationsof state(EOS)are associatedwith

points. When zone quantitiesare constructed,it is necessaryto associatean EOS

with the zone. If the threevertexpointsare all the same materialthen the zone is

of that material. Thatis, the EOS of the zone is the same as the EOS of the points.

If all vertexpointsdo not havethe sameEOS, then the EOS of the zone is that of the

materialcontributingthe most mass to the zone.

At the beginningof a cyclewe have .

nn n-1/2 n-1/2
‘i9 Yi9 ‘i , w.

1 P &~P Q;, Illi. .

Firstzonecenteredenergies,densitiesand pressuresare computed

~;+l/2’Q;+l/2’p;+l/2

and a zonecenteredartificialviscosityis constructed

q;+l/2=
+n-1/2

cl(P;+l/2!‘%+1/2).

From thesequantitiesa pressuregradientcan be calculated,and this givesthe two

components(G~,;:) of the accelerationvectorby the line integralmethod.

The

and this

and thus

The

accelerationprovidesan incrementin the velocities

~n+l/2. u+n-1/2
i i + $ Atn

resultsin an advancedvaluefor the coordinates

~+1 ;n +n+l/2
At
n+l/2

i=i
+ u.1

a new valuefor the volumeof eachzone

sn+l -n+l n+l
t+l/2= ‘k+l/2‘8+1/2-

zonalenergychangeis thencomputedbasedupon the work term whichincludes

,

.
n+l/2

both p and q, usinga timecenteredpressure,p . Time centeringthis term is

importantto conserveenergy. For generalequationsof stateit is done with one

iterationinvolvingthe EOS and the energyequation.

Energychangesare mappedback to the node quantitiesby definingthe spatialsum
.%::

(mdc)~= x(

. . .

‘k+l/2‘fi+l/2l-li.+U2’%1/2)n
. ..

E

Then
.

&
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n+l
Si = c; + [(mdc):+1 - (mdc)~]/mi

Care must be takenin updatingthe nodaldensity. If it is done with a strict

volumechange,or by a simplemappingfromzoneto node,then the densitymay change

due to mesh optimization.This is undesirablebecausesuchchangeswillcause

pressurechangeswhichwillcausemesh motion. We want the densityto changeonly

due to fluidmotionsand this is done with the notionof pseudovolumes.

Let mi and S: be the nodalmass,and pseudo-volumeof node i at the
. beginningof a cycle. At problemgenerationtime J; = S?.
.

Firstwe reconnectthe mesh and thenwe computeJ;, the actualvolume,

aftermesh reconnectionbut beforehydro. Afterhydro,the actualvolumeis
n+l
Ji and the pseudovolumeis

The new

remains

Sn+l n+l=S~+Ji -J:i

n+l
densityis Pi

n n n+l= Pi Si/Si . With this approachthe mass of a node

constantand the densitychangesonly due to fluidmotions.

5. StaggeredMesh CompressibleFormulation

In this formulationmesh elementsare a mixtureof quadsand trianglesand the

prognosticvariablesare staggeredin spaceand time as suggestedby von Neumann

and Richtmyer[2]. The variablesare

.

>
.

.

~ $ ~+1/2 n n
j’ j’ j

9 Pzs ~z~

wherea subscriptz designatesa

The calculationis advanced

1.

2.

3.

3a.

4.

5.

6.

EOS~,

zonal

~n+l/2
z

quantity.

in time as follows:

Mesh optimization

Q
n-1/2

(on, Aun-1’2)

Applyboundaryconditions

7+1/2
j

Xn+l+s n+l
j z

n+l n n n+l
P =ps/s

.1::
. .

.<
.

.

&
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7a. ~y+l = E(pn,Qn-1/2,“n+l/2)

‘u-1+17b. p
ul+l

=p(c , 13n+1)

7C. #+1 = &(Pn,~++ Qn-1’2,lJn+l’2)

8. En+l= en + #+1

At

We start with a mesh that consistsprimarilyof quads. This has the positive
.

aspectof reducingthe numberof zonesby a factorof two and thusof reducingmemory

requirementsand of speedingup the calculationby a factorneartwo.

Experimentallywe have foundthat in calculatingthe growthof Meshkov-Richtmyer

instabilities,triangularzonestend to stiffenthe mesh and to reducethe growth

rate significantly.On the otherhand,quadscan tanglewith resultingbowtiesand

boomerangswhichmay resultin negativevolumes.

As a problemruns and the fluiddistorts,mesh optimizationtendsto introduce

triangularzonesas will be discussedin section6.

6. Mesh Reconnectionand Optimization

With thisFree-Lagrangealgorithm,the nodesare reconnectedsubjectonly to a

few constraints.Mainlywe requirethat the area of each zone be positiveand that

the connectivitybe symmetric. The firstconcernis that any smallareaof the

physicaldomainof the problembe covereduniquelyby zones. The symmetryconcern

helpsto conservemomentum.

The meshmay be reconnectedin two modes: (1) by an interactivegraphicscode

thatoperateson a restartdump and attemptsto reconnectas directedby a human;

(2) automaticallyby the main code at executiontime. Commentson the firstmode of ‘

operationwill be foundin section7. The secondmode requiresa predetermined ;

strategythat is determinedby a set of usercontrolledparameters.We developthis

strategyand the optionsit employs through experimentingwith bothmodes1 and 2. .

Each new problembringswith it new challengesfor the optimizationstrategy.

We learnhow to run complexproblems by a trialand errorprocedure- by trying

out new and differentmesh optimizationoptionsfor example. Olderoptionsare

rarelydiscardedin favorof new options- they are reprioritizedrelativeto the new

optionsin termsof when and if they are used. The prioritizedcollectionof mesh ~*:.-

reconnectionoptionsis calledan optimizationstrategy. Thusthe numberof mesh ~ ;

optimizationoptionsincreaseswith age as does the complexityof the mesh

optimizationstrategy. Thisgrowthpermitsmore and more complexfluidmotionsto be’

treatedautomaticallyby the code as time passes. The analogywith a growingchild

i= imnnccihl-tn avnid.
&
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Differentmesh situationsmay call for differentoptionsand the usercan

influencethe optimizationprioritieswith a set of parameters.

Mesh optimizationinvolvesreconnectingnodestogetherin orderto enhancethe

calculationin somesense. In the firstand secondversionsof the code the primary

strategyhad to do’withconnectingnearestneighborstogether. In the thirdversion

we are more concerned with keepingAt up. In somesensewe’vemovedfroma global

to a localstrategy.

In thisalgorithm,mesh optimizationor reconnectiontakesplacefor three
.

reasons: (1)we try to preventthe mesh fromgettinginto unsuitabletopologiessuch
●

as bowties and boomerangs (a non-problem with triangularmesh elements);(Z) when

At fallsbelowa userdefinedthreshold,we changethe mesh locallyto improve

At; (3)mesh reconnection takesplace along material interfaceswhen one material

wantsto slidealonganother.

In terms of optimizing At and accommodating shearing motionsthismanifestation

of the Free-Lagrangemethodmay be classified as an adaptive mesh scheme.

A simpleexampleof mesh optimizationis basedon the notionof nearest

neighbors. We want eachnode to be coupledonlyto thosenodescloseto it because

in some sensethis improvesthe accuracy. Assumeall mesh elementsare triangles

and that a mesh exists. Figure3a showsthe relationbetweenmeshelementsikt and

ijk - they have a commonside ik whichis a diagonalof quadrilateralijk!L.Their

connectionsto the restof the mesh are not shown. Sinceeveryquad has two

diagonalsit is possibleto do a localreconnectionby breakingconnectionik and

makingconnectionj!?as shownin Fig. 3b. That is, we disconnectone diagonaland

connectthe other. Nodesi and k each losea neighborwhilenodesj and Reach

gain a neighbor. The numberof nodesand zonesare conserved. Eothnew zonesare

allowedsincetheirareasare positive. This reconnectionis calleda “FLIP”.

●

✌

.

k
k

3a 3b 3C J

Figure3
.*::
. .

.>.

ConsideringFig. 3c, we see that a constrainton the FLIP optionis necessary.

Distancej~is lessthandistanceik but a f-Lip wouldresultin zone ij~having a -

negativearea. The FLIP couldpossiblystilltakeplaceif the next layer of
&
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neighborswereconsidered,but the lossof simplicityfor a smallgain makesthis

extensionunattractive.Otherconstraintscan alsobe applied- for example,we want

the areaof the smallestnew zoneto be greaterthan some fractionof the sum of the

two areas(typically20%).

The FLIP operationis localbut the notionof a nearestneighbormesh is

global. We constructa nearestneighbormesh by sweepingover all mesh connections

and consideringa FLIP for each one. This is an iterativeprocessand we continue

makingmesh passes until we find that no flips have occurred. We then have a nearest

neighbormesh.

The FLIP optioncan be usedto optimizethe mesh to statesotherthan nearest

neighbor. For examplewe Mightwant to generatea rnest-1in whichthe variationsin

zone area is minimizedand so flipswouldmake/breakconnectionsso that the

differencein the two new areaswas lessthanthe differencein the two old areas.

Equilateraltrianglesminimizetruncationerrorsand so FLIP couldbe made to

minimizethe anglevariationin the new zones.

With a triangularmesh,the FLIP optionwas quitesimpleas illustratedat the

top of Fig. 4. The introductionof quadsmeansmore flexibility in maximizingAt

with FLIP as is seen in the remainderof Fig. 4.

FLIP

am

e

G1
a
al
6)
(z)

Figure4

The FLIPoptionmay be considereda tool and the mesh loop insidean iteration ‘

●

,

.

.*::
. .

may be considereda strategyfor accomplishing some goal (Creatingalmostequilateral
&
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triangles).Anotherstrategyfor usingFLIP comesintoplay whenwe have large

relativefluidmotions(shearingmotionsfor example).

When one fluidmovesrelativeto anotheralonga materialinterface,the mesh is

reconnectedby flipsalongthe interface. This SLIP-FLIPoperationis triggeredwhen

an angle (withits vertexnode on the interface)exceeds95°. Figure5A showsa slip
motionwith Si_IP-FLIPinhibitedand Fig. 56 shows the same motion with SLIP-FLIP

operational.In Fig. 5 the leftmaterialhas movedupwardssincethe initialtime

when both fluidswere at the sameheight.
.

●

✎

.
SLIPFLIP

4

.2

0

-2

-4

-6

-e

Figure5

Compressiblehydrocodesusingan explicittime centeringscheme
● limitationbasedon the Courantcondition,

At cmin (L/C)

whereC is the soundspeedand L is the altitudeof the triangle. As

have a &t

zonescompress

and distortL may decreaseand C may increaseto the pointwhereeconomicsdictates

thatthe problemcannotcontinuedue tO a Small At. At this pointthe problemdies

or we inventways to increaseAt by increasingL (C is not at our disposal). The - “-’”:

primarytoolsfor increasingAt are FLIp,MERGE,NYM and ZAZ. .

The MERGEoptionis used to mergetwo nodesOf a triangletogetherwhen At in

thatzone fallsbelowa userdefinedthresholdas seenin Fig. 6. If nodesA and B
~

are bothinteriornodes,the MERGEactiondestroystwo zonesand one node. A new
&
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Figure6

option,NYM (afterPeterRoberts)triesto improveAt by movingthe nodesaway from

each other. The idea here is to increaseAt by increasingthe criticallengthin

the zonecontrollingAt. Zonesare not destroyedand it appearsthat NYM is an

improvementoverMERGE. As with othermesh optimizationactionsthe priceto be paid

for NYM is a smallamountof localdiffusionbecauseof the necessaryoverlay

calculationthat conservesmass and energy. The currentstrategyis to try NYM first

and if it fails(e.g.,it can’timproveAt enough)then to resortto MERGE.

The ZAZ option(Fig.7) destroysa zone by movingthe node oppositethe longest

edge overto the longestedge. This destroysone zone,but createsa new one by

subdividingthe zoneon the oppositeside of the longestedge. -SinceZAZ subdivides

a zone it may in factcause At to decrease. In the overallAt optimization ●

strategy,it is thereforeused only when

may lowerAt, but it also loosensup the

optionmay fix the problemthe following

all othertoolshave failed. In practiceit ,

mesh structureso thatMERGEor another

cycle. .

ZAZ
.%:-,
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If a quad turnsintoa boomerangit is splitintotwo triangles(Fig.8).

Similarly,if we projectthat a quad will bowtiein 3 cyclesthe quadis splitinto

two triangles. We try to avoidSPLITby doinga NYM operationfirst. If the NYM

failsto fix the problem(possiblebecauseof geometricconstraintson node motion)

then we resortto SPLIT.

.

SPLIT

‘

As a

move away

Figure8

problemevolves,partof the mesh may becomepoorlyresolvedbecausenodes

fromeach other- considerfor examplethe growthof a perturbationon an

unstableinterface. The CREW option(Fig.9) subdivideszoneedges(~EATE~OINTS)

when they becomelongerthan a givenvalue. CurrentlyCREAPoperatesonly on

interfacesand boundaries.

,-
.

CREAP

Figure9

Two simplifiedexamplesof mesh strategyare shownin Figs.10 and 11. In

Fig. 10 we see a “prevent”strategyin whichwe are attemptingto anticipatethe

occurrenceof an undesirablesituation(a bowtiehere)and to preventthis situation

fromdeveloping. In Fig. 11 we attemptto keepthe integrationtime step up by first
-t;-

tryingto NYM and then,if that fails,to mergezoneswhosecurrentAt fallsbelow . - :

user definedthresholds.The completemesh optimizationstrategyincludingSLIP-FLIP J

checks,checkson geometryand interfacesand so on is much more complexthanthese .

simpleexamples.

&
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7. InteractiveGraphics(IG)

quw:mwvj-j“
I

8 t
d I

I WY%C51
Figure11

As a problemrunsit changesits shapeand it is of some interestto the user to

studythis shapechange. We can specifyaheadof time that the hydrocode produce

graphicsoutputas it runs but many timeswe do not know aheadof time what we want

to see. As the problemrunswe thereforeleavea trailof restartdumpsand we can

use IG on theseand get snapshotsof any part of the problem.

Anotherimportantaspectof IG is that it allowshumansto reconnectthe mesh.

Sometimesduringthe evolutionof a problem,the mesh gets intoa configurationthat

cannotbe improvedby automaticreconnection. This happensbecausethe reconnection

algorithmis not smartenoughor becausethe wrongoptimizationstrategyhas been

chosenby the user. In thesesituations,the usercan fix the problemwith IG

becausethe humanhas a more globalview of the mesh than does the reconnection

algorithm.Withmore global information the human can causemesh reconnectionto

happenthatthe hydrocode has not beentaughtto consider. Sometimesthis leadsto

an improvementin the hydrocode;usuallyit resultsin a brokenproblembeingfixed

and beingableto continue.

In the earlydevelopmentstagesof the hydrocode,the reconnectionalgorithm -

.

4

*

.

L

- *: . .

. .

~
had very littleintelligence.By usingIG on a numberof differentproblems,humans J

were ableover a periodof

ableto teachmuchof this

reconnectionalgorithm.

time to figureout how bestto reconnectthe mesh and were.
to the hydrocode in termsof expandingthe mesh

&
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8. ResultsfromMeshkov-RichtmyerInstabilityGrowth

“.

An exampleof instabilitygrowthwill illustratethe

Fig. 12 we see the evolutionof a perturbationon an

SeVeralshocks. In thisMeshkov-Richtmyersituation

shocksin both directions.The jump in-perturbation

j~p in fluidvelocitydue to the shock.

staggered

interfacethat

mesh scheme. In

is acceleratedby

the interface is unstable to

velocity is proportional to the

t’
“

Fiqure12 &
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The initialshocktravelsfromleftto rightand the interfaceseparateslight

(left)fromheavy (right)fluids. Only part of the totalmesh is shown. The initial

shockreflectsoff the rightedge of the problemand reachesthe interfaceabout

t = 0.7. At thistimethe reflectedshockpassesthroughthe interface.Sincethis

shockis from heavyto light,the perturbationgoes througha phasechangewhile

continuingto grow.

Figure 13 shows the mesh aroundthe perturbationat the

perturbationgrows, resolutionis lost alongthe interface.

beingusedto extendthe calculationto latertimes.

1.005

1.004

i .003

i.002

1.001

103

1.000

finaltime. As the

The CREAPoptionis

I I \ I I I f I l\ { I r, I I i I I I I(~ \— \ \ I 1
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