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ABSTRACT

Since 1970 a research and development program in Free-Lagrange methods has been
active at Livermore. The initial steps were taken with incompressible flows for
simplicity. Since then the effort has been concentrated on compressible flows with
shocks in two space dimensions and time. In general, the line integral method has
been used to evaluate derivatives and the artificial viscosity method has been used
to deal with shocks.

Basically, two Free-Lagrange formulations for compressible flows in two space
dimensions and time have been tested and both will be described. In method one, all
prognostic gquantities were node centered and staggered in time. The artificial
viscosity was zone centered. One mesh reconnection philosophy was that the mesh
should be optimized so that nearest neighbors were connected together. Another was
that vertex angles should tend toward equality. In method one, all mesh elements
were triangles.

In method two, both quadrilateral and triangular mesh elements are permitted.
The mesh variables are staggered in space and time as suggested originally by
Richtmyer and von Neumann. The mesh reconnection strategy is entirely different in
method two. In contrast to the global strategy of nearest neighbors, we now have a
more local strategy that reconnects in order to keep the integration time step above
a user chosen threshold. An additional strategy reconnects in the vicinity of large
relative fluid motions. _

Mesh reconnection consists of two parts: (1) the tools that permit nodes to be
merged and quads to be split into triangles etc. and; (2) the strategy that dictates
how and when to use the tools. Both tools and strategies change with time in a
continuing effort to expand the capabilities of the method. New ideas are
continually being tried and evaluated. The successful ones stay in the code, and in
some sense its intelligence increases with time.

Examples of mesh optimization tools and strategies and of sample problems will

be given.







1. Introduction

The Free Lagrange effort at Livermore has.been active since 1970 and has moved
sequentially in three different directions. The initial effort was confined to
incompressible flows [1]. During this time basic ideas were explored such as initial
mesh construction and mesh reconnection during the evolution of a problem. It was
soon realized that initial mesh generation and mesh reconnection were separable
problems. In this paper we will assume that a mesh exists and concentrate on mesh
reconnection.

Another problem that must be faced involves the centering of prognostic
variables in space and time. In the initial incompressible effort and in the first
compressible effort all prognostic variables were node centered. This has the
potential advantage that mesh reconnection will not change the values of prognostic
variables - that is, mesh reconnection does not introduce diffusion. Node centering
has difficulties when it comes to multi-material problems. The notion of material
interfaces, if done correctly, introduces complexities. In the second effort,
material interfaces were handled in a rather crude way and this led to somewhat crude
results.

The third and current effort solves the material interface problem by
recentering the variables according to the traditional Lagrangian centering of
Richtmyer and von Neumann [2]. Energy and mass are zone centered - position,
velocity and acceleration are node centered. With this approach, material interfaces
are well defined; they fall on zone edges (along lines connecting nodes). The
disadvantage is that mesh reconnections now introduce a mixing of adjacent zone
attributes and thus diffusion occurs. However since mesh reconnection is now more
local than global, it is thought that the effect of diffusion is small.

Shock waves are an important aspect of compressible flows. In these
formulations they are automatically taken care of by an artificial viscosity [2,3].

Spatial derivatives are done with the Line Integral method [4].

In the third effort the mesh reconnection philosophy changed along with the
centering of variables. In the first two efforts, mesh reconnection was a global
affair with the goal in mind of connecting nearest neighbors. In the third effort
the strategy is threefold: (1) to accommodate shearing motions; (2) to keep the
integration time step up and; (3) to prevent boomerang and bowtie zone topologies.

Since all these formulations use an explicit scheme for time differencing, the
integration time step is an important consideration.

The remainder of this paper is divided into six sections. Section 2 gives the
equations of motion. Section 3 describes the line integral method with particular
application to the momentum equation. In section 4 the first compressible effort
will be described. In section 5 the current effort will be described and in
section 6 mesh reconnection and optimization will be described. An interactive
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graphics capability is guite important to the development of these methods.
Comments on interactive graphics are in section 7. Results from a sample test

problem are described in section 8.

2. Eguations of Motion

In traditional Lagrangian codes, each node has an invariant set of neighbors and
the spatial difference terms usually involve the original coordinates and a Jacobian
that transforms from orginal to current coordinates. In many cases the mesh elements
(zones) are quadrilaterals.

In this formulation, the mesh elements are both triangles and quadrilaterals and
the number of neighbors of each node may change with time. It is more convenient to
express derivatives in terms of current coordinates; Pomraning [5] refers to this
formulation as the Modified Eulerian and to the traditional formulation as the
Lagrangian.

The equations of motion are
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To these are appended an equation of state
P = p(s,p)

a kinematic equation
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and an equation for the artificial viscosity

phu(Mu - ClC) if au <0

0 otherwise.

The artificial viscosity actually used is somewhat more complex in 20 - differeﬁt
forms are required by quadrilateral and by triangular zones. The tensor g used here
is in a state of continual development. In addition, an optional gkf [6] may be used
to inhibit nonphysical small scale motions in quads.
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The equations are solved in a cylindrical geometry with
: (r,z)

x4+

c+

3. The Line Integral Method

Green's Theorem in the plane states
3P aQ
J]ng + 5;] dx dy =‘ﬁ (P dy - Q dx)

where P and Q are arbitrary functions of x and y. Taking first P to be zero and then

Q we have
w Jpoy
ox ,ﬁ x dy
w S
oy _¢ X dy
where %; and %; are mean values over the area.ﬁ x dy. In finite difference form
we have
Frpay= ) Py olyy - vy )72 (3.1)

The path of integration connects the mid points of the edges - it does not include
points in the zones because va_l/2 is assumed constant in a zone.




-5 -

In the momentum equation we need the gradient multiplied by the reciprocal of the
density. The denominator becomes

i
P xdy= 010 Va2 Palr (3.2)
E -

where A, _,,, is the area of zone £-1/2 and where wi—l/Z is the ratio of angle
(2-1,i,2) to the sum of all angles in zone 2-1/2. The quantity wi—l/Z A1F1/2 is
thus the fractional contribution of zone 2-1/2 to node i.

The r-component of acceleration is the ratio of equations (3.1) and (3.2) and
similarly for the z-component.

The acceleration computed above is in general not centered at node i, but rather
at some other point, say ay- The r-component of acceleration at node i is

[} L] L 3 <> -+
up = Uy o+ (grad u) - (xi - xa.) .
i i
and similarly for the z-component. A similar correction for velocity rather than
acceleration was suggested by Margolin and Nichols [7]. Here the term grad g is
evaluated by a line integral ratio over a path including the neighbors of node i; the

path follows the points ag-

U computed here by line integral method

Work on this correction term is in progress now. At first glance, the point a;
should be at the average centroid of the zones surrounding node i.

4, The Node-Centered Compressible Formulation

In this formulation all mesh elements are triangles and all prognostic variables
are point-centered guantities. However, at the beginning of each cycle and after
optimization, temporary zone-centered energies and masses are computed by a mapping
process. Once these guantities are computed, the traditional Lagrangian centered

Ai fFforenra asmmtinne 21 are need. At the pnd nf the rurle +he naintorenterer




-6 -
quantities have been advanced in time, and all zone-centered information is
forgotten. The mapping process will be described here.

First it is necessary to introduce some notation and some conventions. There
are NPTOT mesh points and each point is connected to its nearest neighbors to give
triangular mesh elements. Each point has NUM neighbors where

NUM > 2 for boundary points

NUM > 3 for interior points.

The three vertices i, j, and k of each triangle are ordered in a counterclockwise
sense in our right-handed (x,y) coordinate plane, Fig. la. Since j and k are two of
the neighbors of i, i is a neighbor of j and of k.

The complete neighborhood of point i consists of several triangles. For
example, a typical interior point is sketched in Fig. lb: point i has five neighbors
and is surrounded by five triangles. The first neighbor of this point may be any of
its neighbors, but the others must follow in counterclockwise order. A typical
boundary point is sketched in Fig. lc. There, point i has four neighbors and three
triangles. Interior points have NUM neighbors and NUM neighboring triangles while
boundary points have NUM neighbors and NUM-1 neighboring triangles. We are more
particular about the organization of boundary neighborhoods. The first and last
neighbors of boundary points are also boundary points, and the counterclockwise
ordering of the neighbors means that a path from the first to the last neighbor lies
within the boundaries of the problem.

In referring to the neighbors of a point, we may use the local index % where

1l <2 <NUM.

Using this, we may refer to a triangle by its "proper" name (i,j,k) or by its first
name and two indices (i,%,2+1). It is then natural to denote point quantities
flor f,
i
and zone quantities
Forls2

When time is introduced, we will use an additional superscript, and denote a
mixed quantity at time level n

i n
(Fee1/2)
or a point quantity at time level n
n
()

In general, the time index is suppressed implying that latest available values are
used. '




a. Typical zone

b. Typical interior point

/>

1T i
dl
f c. Typical boundary point

REPRESENTATIVE GEOMETRIC SKETCHES

Figure 1

Consider the interior mesh point i in Fig. 1b. It is surrounded by five
triangles each of which has a definite area and volume. The curve C defines the area
of the secondary mesh element surrounding the pocint i. That is, we subdivide each
triangle into three parts associating one. part with each vertex of the triangle. If

A1+1/2 is the area of triangle (i,j,k) (Fig. la) then



i i
304172 = Vae1/2 Pos1s2

is the area that point i and zone 2+1/2 have in common. The product “¢;+1/2 is
the angle in radians between side Ij and Ik.

An indefinite summation notation is used and is to be interpreted in the following
manner. The zone area is given by

i
Agels2 = Z : 4941/2
i

and the sum is over the three vertices i, j, and k associated with zone 2+1/2.
point area is given by

i i
AT = E 341/2
A

and the sum is over all zones 2+1/2, (%=1, L-1) surrounding a point where, if NUM
is the number of neighbors for point i,

The

NUM for interior zones
L =

NUM-1 for boundary zones

Similarly, there is a volume associated with each zone and with each point

i3 K
= @+l 4T
Sge1/2 = Toa1/2 Paals2 = U3 ) Ai1s2

i
Sp+1/2

fi ai
2172 Ta1/2
i i
S =Z Sp41/2

%

where S is the volume of revolution divided by 2n and where

. (Qg+1/2 rt 4 z) fz+1/2 (cylindrical geometry)
=i
Torl/2 =
1 (plane geometry)
and
1-¢

R.1/2 = —
1l .1
Z V172

ijk
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The constant ¢ is taken to be 7/12 to give the correct volumes for equilateral
triangles. We define the geometric factor
i _ =i i
Nev1/2 = Taa1/2 Veu1/2

and the mapping factor
i i i
Foe1/2 = Mhs1/2 / Z :“z+1/2 .
£
The mass contribution from point i to zone #+1/2 is (Fig. 2)

{+1

VV «_

e+ =mify Ly

f: + % = f(x‘l' ?ﬂ,-)—(.e*. 1)

Figure 2

i i
Moe172 =™ Toi1/2

and the mass in zone %+1/2 is the sum of the three vertex contributions
m = E mi
2+1/2 +1/2 °
ijk
The specific internal energy in zone 2+1/2 is

c _ 1 ei i
2+41/2 " m E 21+1/2 °
L+1/2 13w

and the density is

/

Pge1/2 = Mps1/2"5041/2

Once the energy and density have been determined, the pressure is determined through

the equation of state p = p(e,p).
These mapping equations hold for boundary zones (Fig. lc) as well as interior

Zones,
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The mapping described here is conservative in that the sum of mi or ei over
all the points is identical to the sum of Mosl/2 OF €g.1/o OVET all the zones.

Materials, material properties, and equations of state (EOS) are associated with
points. When zone quantities are constructed, it is necessary to associate an EOS
with the zone. If the three vertex points are all the same material then the zone is
of that material. That is, the EOS of the zone is the same as the EQS of the points.
If all vertex points do not have the same EQS, then the EOS of the zone is that of the
material contributing the most mass to the zone.

At the beginning of a cycle we have

n n-1/2 n-1/2 n n
le yl’ Ul ) wi v €5y Piy mi .

First zone centered energies, densities and pressures are computed

n

Po+1/2

iy n
2+1/2" Pel/27
and a zone centered artificial viscosity is constructed

n n +n-l/2
Ag,1/2 = Aleg,1/00 807175 -
From these guantities a pressure gradient can be calculated, and this gives the two
components (GQ, Qg] of the acceleration vector by the line integral method.
The acceleration provides an increment in the velocities

an+l/2 _ Gn-l/2 sn N

i = U; +uiAt

and this results in an advanced value for the coordinates

N+l >0 n+l/2 , n+1/2
xi = xi + Uy At

and thus a new value for the volume of each zone

n+l -n+1 n+1
Seel/2 = Taals2 Paslsa

The zonal energy change is then computed based upon the work term which includes
both p and g, using a time centered pressure, pn+l/2. Time centering this term is
important to conserve energy. For general equations of state it is done with one
iteration involving the EQS and the energy equation.

Energy changes are mapped back to the node quantities by defining the spatial sum

n i - n
(mde); = :E: Me1/2 €041/2 Moe1/2/Tge1/2)
2

Then
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n+l

et eg + [(hde)i - (mde)’i‘]/mi

Care must be taken in updating the nodal density. If it is done with a strict
volume change, or by a simple mapping from zone to node, then the density may change
due to mesh optimization. This is undesirable because such changes will cause
pressure changes which will cause mesh motion. We want the density to change only
due to fluid motions and this is done with the notion of pseudo volumes.

Let ms and S? be the nodal mass, and pseudo-volume of node i at the
beginning of a cycle. At problem generation time Jg = S?.

First we reconnect the mesh and then we compute Jg, the actual volume,
after mesh reconnection but before hydro. After hydro, the actual volume is

n+l

Ji and the pseudo volume is

n+l n n+l n
Si = Si + Ji - Ji
The new density is p?+l = pg S?/S?+l. With this approach the mass of a node

remains constant and the density changes only due to fluid motions.

5. Staggered Mesh Compressible Formulation

In this formulation mesh elements are a mixture of quads and triangles and the
prognostic variables are staggered in space and time as suggested by von Neumann
and Richtmyer [2]. The variables are

n+l/2
z

n 3n Gn+l/2 non
j’ : ’ pZ’ z?

n
P E0S), Q

where a subscript z designates a zonal quantity.
The calculation is advanced in time as follows:
1. Mesh optimization

2. Qn--l/2 (pn’ Aun—l/Z)

L
+n
u,

J

3a. Apply boundary conditions

4. ﬁq+l/2
J
n+l n+l

6. pn+l - pn Sn/sn+1
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7a. 6'éml - e(pn, Qn-l/Z, Un+l/2)

b. an+l - p(%ﬂ*l, pn+l)
7. 68n+l - €(pn’ an+l’ Qn-l/Z, Un+l/2)
8. En+l - en . den+l

At

We start with a mesh that consists primarily of quads. This has the positive
aspect of reducing the number of zones by a factor of two and thus of reducing memory
requirements and of speeding up the calculation by a factor near two.

Experimentally we have found that in calculating the growth of Meshkov-Richtmyer
instabilities, triangular zones tend to stiffen the mesh and to reduce the growth
rate significantly. On the other hand, quads can tangle with resulting bowties and
boomerangs which may result in negative volumes.

As a problem runs and the fluid distorts, mesh optimization tends to introduce
triangular zones as will be discussed in section 6.

6. Mesh Reconnection and Optimization

With this Free-Lagrange algorithm, the nodes are reconnected subject only to a
few constraints. Mainly we require that the area of each zone be positive and that
the connectivity be symmetric. The first concern is that any small area of the
physical domain of the problem be covered uniquely by zones. The symmetry concern
helps to conserve momentum.

The mesh may be reconnected in two modes: (1) by an interactive graphics code
that operates on a restart dump and attempts to reconnect as directed by a human;

(2) automatically by the main code at execution time. Comments on the first mode of
operation will be found in section 7. The second mode requires a predetermined
strategy that is determined by a set of user controlled parameters. We develop this
strategy and the options it employs through experimenting with both modes 1 and 2.
Each new problem brings with it new challenges for the optimization strategy.

We learn how to run complex problems by a trial and error procedure - by trying
out new and different mesh optimization options for example. Older options are
rarely discarded in favor of hew options - they are reprioritized relative to the new
options in terms of when and if they are used. The prioritized collection of mesh
reconnection options is called an optimization strategy. Thus the number of mesh
optimization options increases with age as does the complexity of the mesh
optimization strategy. This growth permits more and more complex fluid motions to be *
treated automatically by the code as time passes. The analogy with a growing child

ie imnneeihle tn avnid.
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Different mesh situations may call for different options and the user can
influence the optimization priorities with a set of parameters.

Mesh optimization involves reconnecting nodes together in order to enhance the
calculation in some sense. In the first and second versions of the code the primary
strategy had to do with connecting nearest neighbors together. In the third version
we are more concerned with keeping At up. In some sense we've moved from a global
to a local strategy.

In this algorithm, mesh optimization or reconnection takes place for three
reasons: (1) we try to prevent the mesh from getting into unsuitable topolegies such.
as bowties and boomerangs (a non-problem with triangular mesh elements); (2) when
At falls below a user defined threshold, we change the mesh locally to improve
At; (3) mesh reconnection takes place along material interfaces when one material
wants to slide along another.

In terms of optimizing At and accommodating shearing motions this manifestation
of the Free-Lagrange method may be classified as an adaptive mesh scheme.

A simple example of mesh optimization is based on the notion of nearest
neighbors. We want each node to be coupled only to those nodes close to it because
in some sense this improves the accuracy. Assume all mesh elements are triangles
and that a mesh exists. Figure 3a shows the relation between mesh elements ik{ and
ijk - they have a common side ik which is a diagonal of quadrilateral ijk%. Their
connections to the rest of the mesh are not shown. Since every quad has two
diagonals it is possible to do a local reconnection by breaking connection ik and
making connection j& as shown in Fig. 3b. That is, we disconnect one diagonal and
connect the other. Nodes i and k each lose a neighbor while nodes j and & each
gain a neighbor. The number of nodes and zones are conserved. Both new zones are
allowed since their areas are positive. This reconnection is called a "FLIP".

3a 3b 3c
Figure 3

Considering Fig. 3c, we see that a constraint on the FLIP option is necessary.
Distance j%& is less than distance ik but a FLIP would result in zone ijg having a
negative area. The FLIP could possibly still take place if the next layer of
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neighbors were considered, but the loss of simplicity for a small gain makes this
extension unattractive. Other constraints can also be applied - for example, we want
the area of the smallest new zone to be greater than some fraction of the sum of the
two areas (typically 20%).

The FLIP operation is local but the notion of a nearest neighbor mesh is
global. We construct a nearest neighbor mesh by sweeping over all mesh connections
and considering a FLIP for each one. This is an iterative process and we continue
making mesh passes until we find that no flips have occurred. We then have a nearest
neighbor mesh.

The FLIP option can be used to optimize the mesh to states other than nearest
neighbor. For example we might want to generate a mesh in which the variations in
zone area is minimized and so flips would make/break connections so that the
difference in the two new areas was less than the difference in the two old areas.
Equilateral triangles minimize truncation errors and so FLIP could be made to
minimize the angle variation in the new zones.

With a triangular mesh, the FLIP option was quite simple as illustrated at the
top of Fig. 4. The introduction of quads means more flexibility in maximizing At
with FLIP as is seen in the remainder of Fig. 4.

O

FLIP

-

SEINJGIAINE

Figure 4

The FLIP option may be considered a tool and the mesh loop inside an iteration
may be considered a strategy for accomplishing some goal (creating almost equilateral



- 15 -

triangles). Another strategy for using FLIP comes into play when we have large
relative fluid motions (shearing motions for example).

When one fluid moves relative to another along a material interface, the mesh is
reconnected by flips along the interface. This SLIP-FLIP operation is triggered when
an angle (with its vertex node on the interface) exceeds 95°. Figure 5A shows a slip
motion with SLIP-FLIP inhibited and Fig. 5B shows the same motion with SLIP-FLIP
operational. In Fig. 5 the left material has moved upwards since the initial time
when both fluids were at the same height.

SLIPFLIP
6 OEF= . Opl
4 '
2 2
0 0
-2 -2
- -y
-6 -6
-8 -8
Figure 5

Compressible hydro codes using an explicit time centering scheme have a At

limitation based on the Courant condition,
At < min (L/C)

where C is the sound speed and L is the altitude of the triangle. As zones compress
and distort L may decrease and C may increase to the point where economics dictates
that the problem cannot continue due to a small At. At this point the problem dies
or we invent ways to increase At by increasing L (C is not at our disposal). The
primary tools for increasing At are FLIP, MERGE, NYM and ZAZ.

The MERGE option is used to merge two nodes of a triangle together when At in
that zone falls below a user defined threshold as seen in Fig. 6. If nodes A and B
are both interior nodes, the MERGE action destroys two zones and one node. A new
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option, NYM (after Peter Roberts) tries to improve At by moving the nodes away from
each other. The idea here is to increase At by increasing the critical length in

the zone controlling At. Zones are not destroyed and it appears that NYM is an
improvement over MERGE. As with other mesh optimization actions the price to be paid
for NYM is a small amount of local diffusion because of the necessary overlay
calculation that conserves mass and energy. The current strategy is to try NYM first
and if it fails (e.g., it can't improve At enough) then to resort to MERGE.

The ZAZ option (Fig. 7) destroys a zone by moving the node opposite the longest
edge over to the longest edge. This destroys one zone, but creates a new one by
subdividing the zone on the opposite side of the longest edge. Since ZAZ subdivides
a zone it may in fact cause At to decrease. In the overall At optimization
strategy, it is therefore used only when all other tools have failed. In practice it
may lower At, but it also loosens up the mesh structure so that MERGE or another
option may fix the problem the following cycle.

Finmre 7
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If a quad turns into a boomerang it is split into two triangles (Fig. 8).
Similarly, if we project that a quad will bowtie in 3 cycles the quad is split into
two triangles. We try to avoid SPLIT by doing a NYM operation first. If the NYM

fails to fix the problem (possible because of geometric constraints on node motion)
then we resort to SPLIT.

Figure 8

As a problem evolves, part of the mesh may become poorly resolved because nodes
move away from each other - consider for example the growth of a perturbation on an
unstable interface. The CREAP option (Fig. 9) subdivides zone edges (CREATE POINTS)

when they become longer than a given value. Currently CREAP operates only on
interfaces and boundaries.

; e L\
e

Figure 9
Two simplified examples of mesh strategy are shown in Figs. 10 and 11. 1In
Fig. 10 we see a "prevent" strategy in which we are attempting to anticipate the
occurrence of an undesirable situation (a bowtie here) and to prevent this situation
from developing. In Fig. 11 we attempt to keep the integration time step up by first
trying to NYM and then, if that fails, to merge zones whose current At falls below _
user defined thresholds. The complete mesh optimization strategy including SLIP-FLIP -

checks, checks on geometry and interfaces and so on is much more complex than these
simple examples.
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EXAMIALE O FREVENT MEst OPMIZATION EXAMALE.
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Figure 10 Figure 11

7. Interactive Graphics (IG)

As a problem runs it changes its shape and it is of some interest to the user to
study this shape change. We can specify ahead of time that the hydro code produce
graphics output as it runs but many times we do not know ahead of time what we want
to see. As the problem runs we therefore leave a trail of restart dumps and we can
use IG on these and get snapshots of any part of the problem.

Another important aspect of IG is that it allows humans to reconnect the mesh.
Sometimes during the evolution of a problem, the mesh gets into a configuration that
cannot be improved by automatic reconnections. This happens because the reconnection
algorithm is not smart enough or because the wrong optimization strategy has been
chosen by the user. In these situations, the user can fix the problem with IG
because the human has a more global view of the mesh than does the reconnection
algorithm. With more global information the human can cause mesh reconnections to
happen that the hydro code has not been taught to consider. Sometimes this leads to
an improvement in the hydro code; usually it results in a broken problem being fixed
and being able to continue.

In the early development stages of the hydro code, the reconnection algorithm
had very little intelligence. By using IG on a number of different problems, humans
were able over a period of time to figure out how best to reconnect the mesh and were
able to teach much of this to the hydro code in terms of expanding the mesh
reconnection algorithm.
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8. Results from Meshkov-Richtmyer Instability Growth

An example of instability growth will illustrate the staggered mesh scheme. In
Fig. 12 we see the evolution of a perturbation on an interface that is accelerated by
several shocks. In this Meshkov-Richtmyer situation the interface is unstable to

shocks in both directions. The jump in-perturbation velocity is proportional to the
Jump in fluid velocity due to the shock.
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The initial shock travels from left to right and the interface separates light
(left) from heavy (right) fluids. Only part of the total mesh is shown. The initial
shock reflects off the right edge of the problem and reaches the interface about
t = 0.7. At this time the reflected shock passes through the interface. Since this
shock is from heavy to light, the perturbation goes through a phase change while
continuing to grow.

Figure 13 shows the mesh around the perturbation at the final time. As the
perturbation grows, resolution is lost along the interface. The CREAP option is
being used to extend the calculation to later times.
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